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VORTEX BRAJWOWN: A TWO-STAGE TRANSITION

M.P. Escudier and J.J. Keller
Brown Boveri Research Centre

CH-5405 Baden, Switzerland r 10 I
SU R0t is demonstrated that a large-scale isentropic transition between conjugate

swirling flow states can occur with no change in the flow force and that both flow
states are supercritical. It is argued that such a transition represents the first stage

' of vortex breakdown in a tube, the second stage being a non-isentropic transition in the
nature of a hydraulic jump to the downstream subcritical state. The intermediate (super-
critical) state consists of a zone of stagnant fluid surrounded by a region of potential
flow. These two zones are separated by a layer of rotational fluid originating in the
upstream vortex core. An outline is given of the analysis for an upstream flow modelled
as a Rankine vortex. It is found that for any ratio of core-to-tube raii, breakdown
(i.e. the first transition) occurs for a unique value of the-wirl number/,/r-U In the
limiting case of an infitesimally small core, the value is ex compared witfi he criti-
cal value 2.405. It is argued that this limit cannot represent free breakdown, which in
consequence must have a different character from the tube-flow breakdowns generally
observed.

I NTRODUCTlON

Previous efforts to explain the phenomenon of vortex breakdown have been centred

upon the concept of a single transition, either in the sense of Benjamin's [1] conju-
gate-state analysis or stability theories such as those of Ludwieg 12] and, most recent-
ly, Leibovich 131. For the most part, these efforts have been limited to weak transi-
tions. The experimental evidence reported by Harvey [4], Sarpkaya (5] and others (6,7],
in contrast, shows breakdown to be invariably a strong perturbation of the flow, as has
been emphasized by, for example, Hall [8] and Leibovich [9]. We present a new and simple
approach to the problem of vortex breakdown in tube flow which yields a simple breakdown
criterion and is consistent with the observed characteristics of the phenomenon.
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Figure 1. Schematic diagram illustrating the idealized process of vortex breakdown
in a cylindrical tube.

The key features of the process of vortex breakdown in a tube are illustrated in
figure 1. We propose that the transition may involve two stages, the first isentropic
from the initial supercritical state to an intermediate state which is also supercriti-
cal. The second stage of the transition, to the downstream subcritical state, is non-
isentropic, much like a hydraulic jump or shock wave. The crucial new idea here is that
the first transition is both isentropic and also involves no change in the flow force
even for a large-scale transition. The latter possibility has been overlooked until
recently [10], most significantly by Benjamin (1]. A striking consequence of the analy-
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sis is that for a given upstream vortex structure, breakdown occurs only for a unique
value of the swirl number r/nr U (an inverse Rossby number): e.g. 42 for a Rankine vor-
tex with an infinitesimally *mill core radius r . Another prediction is that breakdown
is also possible for a purely irrotational swirlfng flow: the example considered is that
of flow in an annulus. complete details of the analysis are given in two recent papers
[10,11] and only the barest essentials are excerpted here to emphasize the principal
assumptions and results. we also present the results of a number of experiments in sup-
port of the analysis and speculate on the nature of free vortex breakdown and on the
real and apparent differences between the axisymmetric and spiral forms of breakdown.

VORTEX BREAKDOWN IN A CYLINDRICAL TUBE - ANALYSIS

A convenient model for the upstream flow state (1) (see figure 1) is the Rankine
vortex:

rr/2nr2  if 0 < r cv = (1)1
r/2nr if rc < r < rt

w = constant = U

where v and w are the swirl and axial components of velocity, r is the core radius. r
the tube radius and r the circulation. The intermediate state (5) is "-so assumed to b
cylindrical with an inner stagnation region of radius r= separated from the outer poten-
tial flow by a layer r < r < rb of rotational fluid o iginating in the upstream vortex
core. The flow between +,hese two states is assumed to be steady, incompressible, axisym-
metric and inviscid. The equation governing the intermediate flow state is then [12]

d2 1 d - k2* if ra < r < rb94- ff - 1Y= (2)
r 0 if rb < r < rt

where ro is the departure of the stream function from its upstream form and

k r/nr2U . (3)

Specification of the intermediate state is completed by introducing appropriate matching
conditions at r , r• and rt. i.e. constancy of the stream function on stream surfaces,
continuity of tRe v~locity across the interface r - rh and zero velocity at r = r . The
solution of equation (2) and calculation of the distributions of v, w and the Itatic
pressure p (from dp/dr = pv 2 /r) is then straightforward (see 110] - [12]).

To answer the question which pair of conjugate flow states corresponding to the
preceding analysis is physically realistic, we must consider the momentum, equation. We
define first the flow force S by

S = 2nfr (pW2 + p)rdr (4)

where p is the fluid density. Using the results already obtained, the flow force differ-
ence between the first and second flow states may be shown to be

1r 4-ra4A S rU2k 2[ r + 1 3r r1r 4 _ i l l b
= [3-r ) + + _r r n(-)]. (5)

Since we are considering flow in a cylindrical tube, with no neans of applying ar -- ter-
nal force to the flow, the difference AS =_ 0. The values of krc (= r/nr U) for .. iich
this identity is satisfied are plotted in figure 2 as a function of rc/rt (ogether with
the corresponding critical values of krc obtained from [1]

1 ;.rc Jo(krc) -12 Jl(krc) = (rt/rc)=_l (6)

It is found that th, upstream flow (for AS = 0) is always supercritical (i.e. kr less
than the critical value), as is the intermediate flow state which can be demonstraied on
the basis of a variational principle [1,10]. As mentioned in the INTRODUCTION, this pos-
sibility of a non-trivial supercritical-supercritical transition was only recently rec-
ognized (10] and is suggested to be the key to understanding vortex breakdown. For the
Rankine vortex, it turns out that for any value of r /r the first transition occurs for
a unique value of krc. More generally it may be shoWn hl0] tl.at for given distributions
of w(r) and v(r) the speed at which the vortex breakdown structure moves is unique. The
subsequent transition to the downstream flow state muot be dissipative, and can be
treated essentially as a hydraulic jump.
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Figure 2. Swirl parameter kr for breakdown (solid curve) and critical-flow (broken

curve) conditions is a function of normalized core radius.

A remarkable result of the analysis is that a non-trivial transition is predicted

even for the asymptotic situation rc/rt * 0. in this case

krc M "2 for breakdown

krc = 2.405 for the critical state

At first sight it might appear that the asymptote r_/r. - 0 is relevant to the case of a
free vortex (r - P). However, an asymptotic analysib, which was the subject of (10],
shows that thik is not the case. In particular, it is found that for r /r * 0, r_/r.
4 0 whereas for a free vortex it must be the case that rJ/r, assumes aqailae different
from zero. It has to be concluded that the free vortex reptestnta a second type of tran-
sition compared to that which we have considered, and that this is ". direct supercriti-
cal - subcritical transition necessarily involving dissipation. A corollary is that
investiga ions of vortex breakdown in tubes are not directly representative of free-vor-
tex breakdown.

Within the small-core approximation, the ideas contained here have been extended to
the analysis of general vortex flow in a tube, including the possibility of area
changes. In many circumstances it is possible and convenient to relate the actual flow
to a fictitious reference Rankine vortex. An interesting result for flows with a strong
overshoot in the axial velocity, as is produced by a strong area reduction, is that the
critical and breakdown values of kr are proportional. This is suggested to be the main
reason why Escudier and Zehnder were able to make quite accurate predictions of
breakdown on the basis of the criticality condition.

VORTEX BREAKDOWN IN A CYLINDRICAL TUBE - OBSERVATIONS

The two examples of axisymmetric vortex breakdown shown in figure 3 are typical of
those reported by Harvey [4), Sarpkaya (5] and others (6,7]. Here advantage has been
taken of the laser-induced fluorescence visualisation technique to reveal the inner
structure of a breakdown bubble. Fluorescein dye has been injected on the tube axis into
the upstream flow. The flow was illuminated by a rapidly oscillating Argon-ion laser
beam sweeping through a diametral plane of the tube (further details of the experiment i i
are given in [10] and [13]). Two features may be observed from figure 3 which support
the interpretation of vortex breakdown proposed here. First, the fluid entering the
bubble in each case clearly emanates from a reqion much smaller in radius than that of A
the bubble itself (and also much smaller in radius than the core), and the latter must J
therefore be a zone of essentially stagnant fluid. secondly, the smooth appearance of
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Figure 3. Exa.sples of vortex breakdown in a cylirdrical tube.
(Flow from left to right)

The internal structure which may be inferred from flow visual;sation is confirmed
by laser Doppler anemometry measurem~ents: axial velocity profiles w(r:x) together wilth
the corresponding streamline map for a low Reynolds number breakdown bubble are show i,
figure 4. It may be noted that a consequence of the subcritical nature of the flow down-
stream of such a bubble is that the detailed structurc of the bubble itself and the
downstream flow are strongly influenced by the downstream geometry arid conditions.

The problem of masking of the intermediate flow state, tintioned above, may be
overcome by injecting air into the bubble as in the situation shown in figure 5. The
smooth character of the first transition is again evident as is the more disturbed
nature of the second (the hydraulic junj,). The flow conditions ale those under whlich a
normal breakdown would occuir in the absence of air inlectron.
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Figure 4. Measured axiLl velocity profiles w(r;n) and streamline map *(r x) for vor-
tex breakdown in a cylindrical tube with~ Ur t/v =265.

Figure S. An aie-filled vortex-breakdown bubble. (Flow from left to right. Arrows
indicate transition locations)
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BREAKDOWN OF POTENTIAL FLOW IN AN ANNULUS ANALYSIS

We consider here a swirling potential flow confined between concentric cylinders.
The upstream flow etate is defined by

v = r/2nr

WU rc < r rt (8)

i.e. we car. imagine the viscous core in figure 1 to be replaced by a solid rod. The
second or intermediate flow state is assumed to consist of an annulus of stagnant fluid
of outer radius rb surrounded by a potential vortex

i.e. v = r/2nr and w = W if rb < r <r (9)

v = 0 and w = 0 if rc r < rb
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Figure 6. Normalized bubble radius and breakdown swirl parameter krc versus normal-
ized inner radius for annular breakdown.

The assumption of an isentropic transition between these two flow states then leads to
(101

( b( 1 ] (10)

rt-rjt ~



whilst for the flow-force difference we have

AS = Lcu - k,) 1- l..()?42 (Sc)ý,ýf(ES) Ib -t _1b b b b

Setting AS = 0 as before leads to krc and r ar as functions ofa ,r'r as plotted in fi-
gure 6. In this case the criticality condat ontfur the downstreamtfi8w 1141 is

'k t~ Ci(i2)

and it is again found that thiLs flow state is always supetctitical.

BREAKDOWN OF POTENTIAL FLOW IN AN ANNULUS - OBSERVATIONS

Fio• Vii~u~lrur".Vn conflrms the occurence of large-scale transitions for swirlling
flow in an annulus. In the first example (figule 7) multiple breakdowns are evident. Al-
thouah the viscous cote has been "replaced" by a ,olld rod, viscous influences are un-
doubtedly responsible for producing the conditions which allow successive breakdowns-
The introduction of ail into the breakdown legion again produces a breakdown bubble
similar to that predicted (figure 8). It. is found that unless conditions closely match
those corresponding to the analysis, air introduced into the flow either penetrates far
upstream (k:c too ldrgc or is swept away (kre too small).

Figure 7. Successive annular breakdowns. (Flow from left to right)
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Figure 8. An air-filled annular breakdown. (Flow from left to right)

CONCLUDING REMARKS

¶•he concept proposed here for the explanation of vortex breakdown has been worked
out in dctail using the Rankine vortex as a model for the upstream flow. The advantage
of this formulation is that the equation for the stream function (2) is then linear both
within the rotational layer (r , r < r ) and also within the surrounding potential flow
(r r < r ). As has been in~icated, More complex flow situations can be analysed with
reverence to a fictitious reference Rankine vortex. Such an analysis has been carried
out in [101 within the small-core approximation, a restriction which can also be dis-
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pensed with as shown in [111. Any more general analysis would evidently require numeri-
cal integration of the equation governing the stream function * (the Long [151-Squire
[16] equation) for a cylindrical flow

2. 1 =r2 dH _ dK (3

wherein H is the dynamic head and K = rv. Such an exercise would undoubtedly provide
more accurate results for particular flows, but would be unlikely to contribute signifi-
cantly to further understanding of the breakdown phenomenon.

We have already speculated that free-vortex breakdown represents a different type
of transition to that for tube flow. By way of further speculation we suggest that there
is no fundamental difference between the so-called spiral type of breakdown and the axi-
symmetric bubble type we consider here. The sniral character is suggested to be a conse-
quence of azimuthal instability leading to roll up and detachment of th: shear layer
surrounding a bubble. This detachment process would then lead to a precessive motion of
the near-stagnant interior fluid. Strong evidence in support of this point of view comes
from the experiments of Escudier and Zehnder [7] who found the correlation of experimen-
tal breakdown data in terms of the simple criterion Fz/UvL = constant to be independent
of the breakdown's appearance. It is also well known [8] that the spiral and axisymmet-
ric breakdown forms are found in the same continuous range and are even interchangable
under appropriate conditions. A further point is that were the spiral form inherently
ron-axisymnettic, the spiral would have to remain stationary, as is observed for the
non-axisymmetric standing-wave patterns for hollow-core vortices [14].
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